TY - GEN
T1 - Boundary-Aware Geometric Encoding for Semantic Segmentation of Point Clouds
AU - Gong, Jingyu
AU - Xu, Jiachen
AU - Tan, Xin
AU - Zhou, Jie
AU - Qu, Yanyun
AU - Xie, Yuan
AU - Ma, Lizhuang
N1 - Publisher Copyright:
Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved
PY - 2021
Y1 - 2021
N2 - Boundary information plays a significant role in 2D image segmentation, while usually being ignored in 3D point cloud segmentation where ambiguous features might be generated in feature extraction, leading to misclassification in the transition area between two objects. In this paper, firstly, we propose a Boundary Prediction Module (BPM) to predict boundary points. Based on the predicted boundary, a boundary-aware Geometric Encoding Module (GEM) is designed to encode geometric information and aggregate features with discrimination in a neighborhood, so that the local features belonging to different categories will not be polluted by each other. To provide extra geometric information for boundary-aware GEM, we also propose a light-weight Geometric Convolution Operation (GCO), making the extracted features more distinguishing. Built upon the boundary-aware GEM, we build our network and test it on benchmarks like ScanNet v2, S3DIS. Results show our methods can significantly improve the baseline and achieve state-of-the-art performance.
AB - Boundary information plays a significant role in 2D image segmentation, while usually being ignored in 3D point cloud segmentation where ambiguous features might be generated in feature extraction, leading to misclassification in the transition area between two objects. In this paper, firstly, we propose a Boundary Prediction Module (BPM) to predict boundary points. Based on the predicted boundary, a boundary-aware Geometric Encoding Module (GEM) is designed to encode geometric information and aggregate features with discrimination in a neighborhood, so that the local features belonging to different categories will not be polluted by each other. To provide extra geometric information for boundary-aware GEM, we also propose a light-weight Geometric Convolution Operation (GCO), making the extracted features more distinguishing. Built upon the boundary-aware GEM, we build our network and test it on benchmarks like ScanNet v2, S3DIS. Results show our methods can significantly improve the baseline and achieve state-of-the-art performance.
UR - https://www.scopus.com/pages/publications/85129953218
U2 - 10.1609/aaai.v35i2.16232
DO - 10.1609/aaai.v35i2.16232
M3 - 会议稿件
AN - SCOPUS:85129953218
T3 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
SP - 1424
EP - 1432
BT - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
PB - Association for the Advancement of Artificial Intelligence
T2 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
Y2 - 2 February 2021 through 9 February 2021
ER -