Blind image deblurring with local maximum gradient prior

Liang Chen, Faming Fang, Tingting Wang, Guixu Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

247 Scopus citations

Abstract

Blind image deblurring aims to recover sharp image from a blurred one while the blur kernel is unknown. To solve this ill-posed problem, a great amount of image priors have been explored and employed in this area. In this paper, we present a blind deblurring method based on Local Maximum Gradient (LMG) prior. Our work is inspired by the simple and intuitive observation that the maximum value of a local patch gradient will diminish after the blur process, which is proved to be true both mathematically and empirically. This inherent property of blur process helps us to establish a new energy function. By introducing an liner operator to compute the Local Maximum Gradient, together with an effective optimization scheme, our method can handle various specific scenarios. Extensive experimental results illustrate that our method is able to achieve favorable performance against state-of-the-art algorithms on both synthetic and real-world images.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
PublisherIEEE Computer Society
Pages1742-1750
Number of pages9
ISBN (Electronic)9781728132938
DOIs
StatePublished - Jun 2019
Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States
Duration: 16 Jun 201920 Jun 2019

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2019-June
ISSN (Print)1063-6919

Conference

Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
Country/TerritoryUnited States
CityLong Beach
Period16/06/1920/06/19

Keywords

  • Low-level Vision
  • Optimization Methods

Fingerprint

Dive into the research topics of 'Blind image deblurring with local maximum gradient prior'. Together they form a unique fingerprint.

Cite this