Abstract
Extremely large pre-trained language models (PTMs) such as GPT-3 are usually released as a service. It allows users to design task-specific prompts to query the PTMs through some black-box APIs. In such a scenario, which we call Language-Model-as-a-Service (LMaaS), the gradients of PTMs are usually unavailable. Can we optimize the task prompts by only accessing the model inference APIs? This paper proposes the black-box tuning framework to optimize the continuous prompt prepended to the input text via derivative-free optimization. Instead of optimizing in the original high-dimensional prompt space, which is intractable for traditional derivative-free optimization, we perform optimization in a randomly generated subspace due to the low intrinsic dimensionality of large PTMs. The experimental results show that the black-box tuning with RoBERTa on a few labeled samples not only significantly outperforms manual prompt and GPT-3's in-context learning, but also surpasses the gradient-based counterparts, i.e., prompt tuning and full model tuning.
| Original language | English |
|---|---|
| Pages (from-to) | 20841-20855 |
| Number of pages | 15 |
| Journal | Proceedings of Machine Learning Research |
| Volume | 162 |
| State | Published - 2022 |
| Event | 39th International Conference on Machine Learning, ICML 2022 - Baltimore, United States Duration: 17 Jul 2022 → 23 Jul 2022 |