Benchmarking Hallucination in Large Language Models based on Unanswerable Math Word Problem

Yuhong Sun, Zhangyue Yin, Qipeng Guo, Jiawen Wu, Xipeng Qiu, Hui Zhao

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

Large language models (LLMs) are highly effective in various natural language processing (NLP) tasks. However, they are susceptible to producing unreliable conjectures in ambiguous contexts called hallucination. This paper presents a new method for evaluating LLM hallucination in Question Answering (QA) based on the unanswerable math word problem (MWP). To support this approach, we innovatively develop a dataset called Unanswerable Math Word Problem (UMWP) which comprises 5200 questions across five categories. We developed an evaluation methodology combining text similarity and mathematical expression detection to determine whether LLM considers the question unanswerable. The results of extensive experiments conducted on 31 LLMs, including GPT-3, InstructGPT, LLaMA, and Claude, demonstrate that in-context learning and reinforcement learning with human feedback (RLHF) training significantly enhance the model's ability to avoid hallucination. We show that utilizing MWP is a reliable and effective approach to assess hallucination. Our code and data are available at https://github.com/Yuki-Asuuna/UMWP.

Original languageEnglish
Title of host publication2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings
EditorsNicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, Nianwen Xue
PublisherEuropean Language Resources Association (ELRA)
Pages2178-2188
Number of pages11
ISBN (Electronic)9782493814104
StatePublished - 2024
EventJoint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024 - Hybrid, Torino, Italy
Duration: 20 May 202425 May 2024

Publication series

Name2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings
ISSN (Electronic)2951-2093

Conference

ConferenceJoint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024
Country/TerritoryItaly
CityHybrid, Torino
Period20/05/2425/05/24

Keywords

  • Dataset
  • Hallucination
  • Large Language Model
  • Math Word Problem

Fingerprint

Dive into the research topics of 'Benchmarking Hallucination in Large Language Models based on Unanswerable Math Word Problem'. Together they form a unique fingerprint.

Cite this