BBTv2: Towards a Gradient-Free Future with Large Language Models

Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou, Xuanjing Huang, Xipeng Qiu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

54 Scopus citations

Abstract

Most downstream adaptation methods tune all or part of the parameters of pre-trained models (PTMs) through gradient descent, where the tuning cost increases linearly with the growth of the model size. By contrast, gradient-free methods only require the forward computation of the PTM to tune the prompt, retaining the benefits of efficient tuning and deployment. Though, past work on gradient-free tuning often introduces gradient descent to seek a good initialization of prompt and lacks versatility across tasks and PTMs. In this paper, we present BBTv2, an improved version of Black-Box Tuning (Sun et al., 2022b), to drive PTMs for few-shot learning. We prepend continuous prompts to every layer of the PTM and propose a divide-and-conquer gradient-free algorithm to optimize the prompts at different layers alternately. Extensive experiments across various tasks and PTMs show that BBTv2 can achieve comparable performance to full model tuning and state-of-the-art parameter-efficient methods (e.g., Adapter, LoRA, BitFit, etc.) under few-shot settings while maintaining much fewer tunable parameters.

Original languageEnglish
Title of host publicationProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022
EditorsYoav Goldberg, Zornitsa Kozareva, Yue Zhang
PublisherAssociation for Computational Linguistics (ACL)
Pages3916-3930
Number of pages15
ISBN (Electronic)9781959429401
DOIs
StatePublished - 2022
Event2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022 - Hybrid, Abu Dhabi, United Arab Emirates
Duration: 7 Dec 202211 Dec 2022

Publication series

NameProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022

Conference

Conference2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022
Country/TerritoryUnited Arab Emirates
CityHybrid, Abu Dhabi
Period7/12/2211/12/22

Fingerprint

Dive into the research topics of 'BBTv2: Towards a Gradient-Free Future with Large Language Models'. Together they form a unique fingerprint.

Cite this