TY - GEN
T1 - Automatic selection of optimal segmentation scales for high-resolution remote sensing images
AU - Yin, Ruijuan
AU - Shi, Runhe
AU - Gao, Wei
PY - 2013
Y1 - 2013
N2 - To extract information from high resolution images is a challenge work.Compared tothe traditional pixel-based approach, the advantages of object-oriented classification methods are well documented. However, the appropriate scale parametersofthese methods are difficult to be determined, andthe choices of scale parametersareof high importance, whichwill havea strong effect on the segmentation effectiveness. Whereas the evaluations of the quality of a segmentation method are still mainly based onsubjective judgment, which is a complicated process and lacksstability and reliability. Thus, an objective and unsupervised method needs to beestablished for selecting suitable parameters for a multi-scale segmentation to ensure the bestresults. In this work, a novicemethod is introduced to choose the optimal parameter for themulti-scale segmentation. For large information in band itself and weak relationship among multispectral bands, valuable bands should be selected from original data and weighed by the degreeofcorrelation. Then thresholds of all 3 selected bands ranging from 20 to 200 (intervals of 10)are created in Definiens Professional 8.7. It considers that a segmentation has two desirable properties: each of the resulting segments should be internally homogeneous and should be distinguishable from its neighborhood. Therefore, the global intra-segment and inter-segment heterogeneity indexes are taken into account to identify the optimal segmentation scale. Finally, cubic spline interpolation is applied to select the optimalsegmentation scale. As a result, the measure combining a spatial autocorrelation indicator and a variance indicator shows that the method can improve the precision in global segmentation.
AB - To extract information from high resolution images is a challenge work.Compared tothe traditional pixel-based approach, the advantages of object-oriented classification methods are well documented. However, the appropriate scale parametersofthese methods are difficult to be determined, andthe choices of scale parametersareof high importance, whichwill havea strong effect on the segmentation effectiveness. Whereas the evaluations of the quality of a segmentation method are still mainly based onsubjective judgment, which is a complicated process and lacksstability and reliability. Thus, an objective and unsupervised method needs to beestablished for selecting suitable parameters for a multi-scale segmentation to ensure the bestresults. In this work, a novicemethod is introduced to choose the optimal parameter for themulti-scale segmentation. For large information in band itself and weak relationship among multispectral bands, valuable bands should be selected from original data and weighed by the degreeofcorrelation. Then thresholds of all 3 selected bands ranging from 20 to 200 (intervals of 10)are created in Definiens Professional 8.7. It considers that a segmentation has two desirable properties: each of the resulting segments should be internally homogeneous and should be distinguishable from its neighborhood. Therefore, the global intra-segment and inter-segment heterogeneity indexes are taken into account to identify the optimal segmentation scale. Finally, cubic spline interpolation is applied to select the optimalsegmentation scale. As a result, the measure combining a spatial autocorrelation indicator and a variance indicator shows that the method can improve the precision in global segmentation.
KW - High spatial resolution image
KW - Image segmentation
KW - Moran's I
KW - Object-oriented image analysis
KW - Spatial autocorrelation
UR - https://www.scopus.com/pages/publications/84887910837
U2 - 10.1117/12.2021606
DO - 10.1117/12.2021606
M3 - 会议稿件
AN - SCOPUS:84887910837
SN - 9780819497192
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Remote Sensing and Modeling of Ecosystems for Sustainability X
PB - SPIE
T2 - Remote Sensing and Modeling of Ecosystems for Sustainability X
Y2 - 26 August 2013 through 29 August 2013
ER -