ASLM: Adaptive Single Layer Model for Learned Index

Xin Li, Jingdong Li, Xiaoling Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

21 Scopus citations

Abstract

Index structures such as B-trees are important tools that DBAs use to enhance the performance of data access. However, with the approaching of the big data era, the amount of data generated in different domains have exploded. A recent study has shown that indexes consume about 55% of total memory in a state-of-the-art in-memory DBMS. Building indexes in traditional ways have encountered a bottleneck. Recent work proposes to use neural network models to replace B-tree and many other indexes. However, the proposed model is heavy, inaccuracy, and has failed to consider model updating. In this paper, a novel, simple learned index called adaptive single layer model is proposed to replace the B-tree index. The proposed model, using two data partition methods, is well-organized and can be applied to different workloads. Updating is also taken into consideration. The proposed model incorporates two data partition methods is evaluated in two datasets. The results show that the prediction error is reduced by around 50% and demonstrate that the proposed model is more accurate, stable and effective than the currently existing model.

Original languageEnglish
Title of host publicationDatabase Systems for Advanced Applications - DASFAA 2019 International Workshops
Subtitle of host publicationBDMS, BDQM, and GDMA, Proceedings
EditorsJoao Gama, Juggapong Natwichai, Yongxin Tong, Guoliang Li, Jun Yang
PublisherSpringer Verlag
Pages80-95
Number of pages16
ISBN (Print)9783030185893
DOIs
StatePublished - 2019
Event24th International Conference on Database Systems for Advanced Applications, DASFAA 2019 - Chiang Mai, Thailand
Duration: 22 Apr 201925 Apr 2019

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11448 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference24th International Conference on Database Systems for Advanced Applications, DASFAA 2019
Country/TerritoryThailand
CityChiang Mai
Period22/04/1925/04/19

Keywords

  • B-tree
  • Model
  • Neural networks
  • Updating

Fingerprint

Dive into the research topics of 'ASLM: Adaptive Single Layer Model for Learned Index'. Together they form a unique fingerprint.

Cite this