Abstract
Protein biomarkers on breast cancer-derived small extracellular vesicles (BC-sEVs) hold great promise in liquid biopsy. However, it remains challenging due to their inherent heterogeneity and low abundance. Herein, we developed an AND logic gate-based DNA cascade signal amplification strategy, termed Alternating Primer Exchange Reaction-activated Cas12a (Alt-PER-Cas12a), for the ultrasensitive detection of BC-sEVs in clinic samples. This dual-protein recognition system employs EpCAM/MUC1-specific capture probes to release two DNA hairpins (Hep and Hmu) as AND gate inputs in Alt-PER. The corresponding Hep and Hmu hairpins can initiate the Alt-PER with a large amount of primers to generate long single-stranded DNA products with alternating repeat units. Each repeating unit serves as a CRISPR activator, inducing the trans-cleavage activity of Cas12a and enabling cascade signal amplification. The as-constructed strategy exhibits excellent sensitivity with LOD of 2.6 × 103 particles/mL. It has been successfully used to discriminate breast cancer patients from healthy donors (AUC = 0.992) in clinical validation, and shows great potential for liquid biopsy.
| Original language | English |
|---|---|
| Article number | 128411 |
| Journal | Talanta |
| Volume | 295 |
| DOIs | |
| State | Published - 1 Dec 2025 |
Keywords
- Alternating primer exchange reaction (Alt-PER)
- Breast cancer
- CRISPR-Cas12a
- Dual-protein recognition
- Small extracellular vesicles (sEVs)