Abstract
Phototriggers are useful molecular tools to initiate reactions in enzymes by light for the purpose of photoenzymatic design and mechanistic investigations. Here, we incorporated the non-natural amino acid 5-cyanotryptophan (W5CN) in a polypeptide scaffold and resolved the photochemical reaction of the W5CN-W motif using femtosecond transient UV/Vis and mid-IR spectroscopy. We identified a marker band of ∼2037 cm-1 from the CN stretch of the electron transfer intermediate W5CN·- in the transient IR measurement and found UV/Vis spectroscopic evidence for the W·+ radical at 580 nm. Through kinetic analysis, we characterized that the charge separation between the excited W5CN and W occurs in 253 ps, with a charge-recombination lifetime of 862 ps. Our study highlights the potential use of the W5CN-W pair as an ultrafast phototrigger to initiate reactions in enzymes that are not light-sensitive, making downstream reactions accessible to femtosecond spectroscopic detection.
| Original language | English |
|---|---|
| Article number | 201102 |
| Journal | Journal of Chemical Physics |
| Volume | 158 |
| Issue number | 20 |
| DOIs | |
| State | Published - 28 May 2023 |