TY - JOUR
T1 - An Oscillation-Free Bound-Preserving Discontinuous Galerkin Method for Multi-component Chemically Reacting Flows
AU - Du, Jie
AU - Liu, Yong
AU - Yang, Yang
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2023/6
Y1 - 2023/6
N2 - This paper develops an oscillation-free discontinuous Galerkin (OFDG) method for solving the multi-component chemically reacting flows. Two common governing equations are considered: reactive Euler equations and Navier–Stokes equations. Based on our recently developed high-order bound-preserving discontinuous Galerkin method in Du and Yang (J Comput Phys 469:111548, 2022), we add an extra damping term into this scheme to control the spurious oscillations. With the careful construction of the damping term, the proposed method not only achieves non-oscillatory property without sacrificing any order of accuracy but also preserves the conservative property which is the key ingredient of the bound-preserving technique developed in Du and Yang (2022). Therefore, the proposed OFDG method is well-compatible with the bound-preserving limiter in Du and Yang (2022). Similar to Liu et al. (SIAM J Sci Comput 44:A230–A259, 2022), the conservative modified exponential Runge–Kutta method is used to relax the restriction of time step sizes and preserve the conservative property of the fully discrete schemes. Numerical experiments, including one- and two-dimensional space, demonstrate the proposed method has desired properties.
AB - This paper develops an oscillation-free discontinuous Galerkin (OFDG) method for solving the multi-component chemically reacting flows. Two common governing equations are considered: reactive Euler equations and Navier–Stokes equations. Based on our recently developed high-order bound-preserving discontinuous Galerkin method in Du and Yang (J Comput Phys 469:111548, 2022), we add an extra damping term into this scheme to control the spurious oscillations. With the careful construction of the damping term, the proposed method not only achieves non-oscillatory property without sacrificing any order of accuracy but also preserves the conservative property which is the key ingredient of the bound-preserving technique developed in Du and Yang (2022). Therefore, the proposed OFDG method is well-compatible with the bound-preserving limiter in Du and Yang (2022). Similar to Liu et al. (SIAM J Sci Comput 44:A230–A259, 2022), the conservative modified exponential Runge–Kutta method is used to relax the restriction of time step sizes and preserve the conservative property of the fully discrete schemes. Numerical experiments, including one- and two-dimensional space, demonstrate the proposed method has desired properties.
KW - Bound-preserving
KW - Conservative time integration
KW - Multi-component chemically reacting flows
KW - Oscillation-free discontinuous Galerkin method
UR - https://www.scopus.com/pages/publications/85159198580
U2 - 10.1007/s10915-023-02217-2
DO - 10.1007/s10915-023-02217-2
M3 - 文章
AN - SCOPUS:85159198580
SN - 0885-7474
VL - 95
JO - Journal of Scientific Computing
JF - Journal of Scientific Computing
IS - 3
M1 - 90
ER -