An online continual object detector on VHR remote sensing images with class imbalance

Xi Chen, Jie Jiang, Zhiqiang Li, Honggang Qi, Qingli Li, Jiapeng Liu, Laiwen Zheng, Min Liu, Yongqiang Deng

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

It is a great challenge for traditional offline detectors to learn from continuous data streams, remember previous tasks and adapt to new-coming tasks in dynamic environments. To meet the challenge, online continual learning has recently attracted increasing attention, while the overwhelming majority of works focus only on classification with a balanced class distribution assumption. In this paper, we propose a replay-based approach called an online continual object detector (OCOD) for very-high-resolution (VHR) remote sensing images. First, we find that rehearsal imbalance is ubiquitous, and has more important impact on experimental results than class imbalance, which is contrary to the situation of offline learning (due to the limited memory). Here, rehearsal imbalance refers to significant difference among the number of images pertaining to various classes. Second, entropy is used to measure the degree of rehearsal imbalance in the memory, and an entropy reservoir sampling (ERS) strategy is proposed to maintain rehearsal balance in the online memory. Finally, a rehearsal-balancing priority assignment network (RBPAN) is proposed to adaptively select images from the memory for a rehearsal-balancing replay procedure. The experimental results obtained on three publicly available VHR satellite images from the NWPU VHR-10, DIOR and DOTA datasets, highlight the effectiveness and practicality of developed method.

Original languageEnglish
Article number105549
JournalEngineering Applications of Artificial Intelligence
Volume117
DOIs
StatePublished - Jan 2023

Keywords

  • Catastrophic forgetting
  • Class imbalance
  • Continual learning
  • Object detection
  • Remote sensing

Fingerprint

Dive into the research topics of 'An online continual object detector on VHR remote sensing images with class imbalance'. Together they form a unique fingerprint.

Cite this