An Information Minimization Based Contrastive Learning Model for Unsupervised Sentence Embeddings Learning

Shaobin Chen, Jie Zhou, Yuling Sun, Liang He

Research output: Contribution to journalConference articlepeer-review

8 Scopus citations

Abstract

Unsupervised sentence embeddings learning has been recently dominated by contrastive learning methods (e.g., SimCSE), which keep positive pairs similar and push negative pairs apart. The contrast operation aims to keep as much information as possible by maximizing the mutual information between positive instances, which leads to redundant information in sentence embedding. To address this problem, we present an information minimization based contrastive learning (InforMin-CL) model to retain the useful information and discard the redundant information by maximizing the mutual information and minimizing the information entropy between positive instances meanwhile for unsupervised sentence representation learning. Specifically, we find that information minimization can be achieved by simple contrast and reconstruction objectives. The reconstruction operation reconstitutes the positive instance via the other positive instance to minimize the information entropy between positive instances. We evaluate our model on fourteen downstream tasks, including both supervised and unsupervised (semantic textual similarity) tasks. Extensive experimental results show that our InforMin-CL obtains a state-of-the-art performance. Code is made available.

Original languageEnglish
Pages (from-to)4821-4831
Number of pages11
JournalProceedings - International Conference on Computational Linguistics, COLING
Volume29
Issue number1
StatePublished - 2022
Event29th International Conference on Computational Linguistics, COLING 2022 - Gyeongju, Korea, Republic of
Duration: 12 Oct 202217 Oct 2022

Fingerprint

Dive into the research topics of 'An Information Minimization Based Contrastive Learning Model for Unsupervised Sentence Embeddings Learning'. Together they form a unique fingerprint.

Cite this