TY - JOUR
T1 - An improved hybrid model on source-risk of polycyclic aromatic hydrocarbon in soils of the Yangtze River Delta urban agglomeration
AU - Li, Yan
AU - Li, Ye
AU - Huang, Ye
AU - He, Tianhao
AU - Jin, Ruihe
AU - Han, Mingzhe
AU - He, Yue
AU - Liu, Min
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2023/1/20
Y1 - 2023/1/20
N2 - The source, exposure and risks of polycyclic aromatic hydrocarbons (PAHs) in soil environments are of great importance to evaluate soil quality. However, understanding the risks of specific sources of PAHs in soils remains poorly understood. In this study, we determined the source, exposure and risks of PAHs in the Yangtze River Delta urban agglomeration. The source analysis receptor model combined with land use types significantly increased the identification of pollution sources and improved the prediction accuracy of PAH concentrations. There is a strong correlation between the measured and predicted values of high ring PAH. The correlations of BbF, InP and Pyr are 0.947, 0.896 and 0.906 respectively, which is significantly higher than the unmodified model. By combining the ecological risk assessment and health risk assessment models of PAHs, we established an improved mixed source-risk model. The PAHs in urban soils had the highest ecological risk and health risk, with risk probabilities of 56.3 % and 28.2 %, respectively. The average contamination severity index values of PAHs caused by oil combustion sources, coal combustion sources, coking furnace sources, and fuel (biomass, petroleum, and diesel) combustion sources were 0.13, 0.10, 0.16 and 0.17, respectively. The average noncarcinogenic risks of PAHs from oil combustion sources, coal combustion sources, coking furnace sources and biomass, petroleum volatilization and diesel combustion sources to children were 0.12, 0.11, 0.08 and 0.13, respectively. Approximately half of the PAH pollution risk in forestland and grassland soil were associated with the combustion of petroleum fossil fuels. This study quantitatively analyzed the contribution of different PAHs pollution sources in different land types of soils, further calculated the risks of each pollution source to the ecological environment and human health, and proposed corresponding treatment measures, which provided scientific and systematic methods and technologies for soil pollution management in other regions of the world.
AB - The source, exposure and risks of polycyclic aromatic hydrocarbons (PAHs) in soil environments are of great importance to evaluate soil quality. However, understanding the risks of specific sources of PAHs in soils remains poorly understood. In this study, we determined the source, exposure and risks of PAHs in the Yangtze River Delta urban agglomeration. The source analysis receptor model combined with land use types significantly increased the identification of pollution sources and improved the prediction accuracy of PAH concentrations. There is a strong correlation between the measured and predicted values of high ring PAH. The correlations of BbF, InP and Pyr are 0.947, 0.896 and 0.906 respectively, which is significantly higher than the unmodified model. By combining the ecological risk assessment and health risk assessment models of PAHs, we established an improved mixed source-risk model. The PAHs in urban soils had the highest ecological risk and health risk, with risk probabilities of 56.3 % and 28.2 %, respectively. The average contamination severity index values of PAHs caused by oil combustion sources, coal combustion sources, coking furnace sources, and fuel (biomass, petroleum, and diesel) combustion sources were 0.13, 0.10, 0.16 and 0.17, respectively. The average noncarcinogenic risks of PAHs from oil combustion sources, coal combustion sources, coking furnace sources and biomass, petroleum volatilization and diesel combustion sources to children were 0.12, 0.11, 0.08 and 0.13, respectively. Approximately half of the PAH pollution risk in forestland and grassland soil were associated with the combustion of petroleum fossil fuels. This study quantitatively analyzed the contribution of different PAHs pollution sources in different land types of soils, further calculated the risks of each pollution source to the ecological environment and human health, and proposed corresponding treatment measures, which provided scientific and systematic methods and technologies for soil pollution management in other regions of the world.
KW - PAHs
KW - Receptor model
KW - Risk assessment
KW - Soils of different land types
KW - Urban agglomeration
UR - https://www.scopus.com/pages/publications/85139595252
U2 - 10.1016/j.scitotenv.2022.159336
DO - 10.1016/j.scitotenv.2022.159336
M3 - 文章
C2 - 36228782
AN - SCOPUS:85139595252
SN - 0048-9697
VL - 857
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 159336
ER -