TY - JOUR
T1 - An Improved Approach of Integrated Carrying Capacity Prediction Based on TOPSIS-SPA
AU - Wei, Chao
AU - Dai, Xiaoyan
AU - Guo, Yiyou
AU - Tong, Xiaohua
AU - Wu, Jianping
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/4/1
Y1 - 2022/4/1
N2 - Regional coordinated development is an important policy to promote socio-economic development, especially in the Yangtze River Delta, Greater Bay Area and others, which is one of the guidelines of the 14th Five-Year Plan for economic development. The relative stability of the carrying capacity (CC) is the precondition for long-term rapid development, whereas the comprehensive capacity of natural resources, ecological environment, social economy, population and others, defined as integrated carrying capacity (ICC). Due to the complexity of the CC quantitative assessment, constructing an accurate ICC predication model is the core challenge of dynamic adjustments of socio-economic development planning. In this study, four critical issues, which focused on indicator value estimation, optimal ICC value screening, ICC tendency prediction and study area application in order to formulate a novel prediction framework, are investigated as follows: (1) The proposal formulated an estimation model of indicator value in the future based on the grey model. The grade ratio and the relative residuals of all third-class indicators are less than 0.1, which is highly accurate for indicator value estimation. (2) The optimal ICC value screening model was proposed based on the multi-objective decision-making theory. The optimal ICC values of Suzhou, Ningbo and Zhoushan were 0.7002, 0.6797 and 0.5982, which were also the maximum values from 1996 to 2019. However, the values of Nantong, Jiaxing and Shaoxing were recorded in 2018, 2001 and 1999, which were not the maximum ICC values, and the difference ratio was more than 10%. The optimal ICC value of these three cities were improved. (3) The ICC prediction model was constructed based on the theory of set pair analysis and Euclidean distance. The ICC prediction result of eight cities maintained a relative fluctuation during 2020–2030. Compared with the polynomial fitting curve predication, there were some differences in Nantong, Shaoxing and Zhoushan over the next 5 years. This study provided an improved approach of ICC prediction model, focusing on indicator weight, indicator data estimation and optimal ICC value screening. The model and conclusion aim to validate the rationality of economic planning target for government policymakers and stakeholders.
AB - Regional coordinated development is an important policy to promote socio-economic development, especially in the Yangtze River Delta, Greater Bay Area and others, which is one of the guidelines of the 14th Five-Year Plan for economic development. The relative stability of the carrying capacity (CC) is the precondition for long-term rapid development, whereas the comprehensive capacity of natural resources, ecological environment, social economy, population and others, defined as integrated carrying capacity (ICC). Due to the complexity of the CC quantitative assessment, constructing an accurate ICC predication model is the core challenge of dynamic adjustments of socio-economic development planning. In this study, four critical issues, which focused on indicator value estimation, optimal ICC value screening, ICC tendency prediction and study area application in order to formulate a novel prediction framework, are investigated as follows: (1) The proposal formulated an estimation model of indicator value in the future based on the grey model. The grade ratio and the relative residuals of all third-class indicators are less than 0.1, which is highly accurate for indicator value estimation. (2) The optimal ICC value screening model was proposed based on the multi-objective decision-making theory. The optimal ICC values of Suzhou, Ningbo and Zhoushan were 0.7002, 0.6797 and 0.5982, which were also the maximum values from 1996 to 2019. However, the values of Nantong, Jiaxing and Shaoxing were recorded in 2018, 2001 and 1999, which were not the maximum ICC values, and the difference ratio was more than 10%. The optimal ICC value of these three cities were improved. (3) The ICC prediction model was constructed based on the theory of set pair analysis and Euclidean distance. The ICC prediction result of eight cities maintained a relative fluctuation during 2020–2030. Compared with the polynomial fitting curve predication, there were some differences in Nantong, Shaoxing and Zhoushan over the next 5 years. This study provided an improved approach of ICC prediction model, focusing on indicator weight, indicator data estimation and optimal ICC value screening. The model and conclusion aim to validate the rationality of economic planning target for government policymakers and stakeholders.
KW - TOPSIS-SPA
KW - integrated carrying capacity
KW - prediction analysis
UR - https://www.scopus.com/pages/publications/85127915217
U2 - 10.3390/su14074051
DO - 10.3390/su14074051
M3 - 文章
AN - SCOPUS:85127915217
SN - 2071-1050
VL - 14
JO - Sustainability (Switzerland)
JF - Sustainability (Switzerland)
IS - 7
M1 - 4051
ER -