Abstract
Visual detection of the methylglyoxal (MGO) level in the brain is critical for understanding its role in the onset and progression of AD. Herein, we disclosed a NIR fluorescent probe, DBTPP, for detecting MGO by utilizing a thiadiazole-fused o-phenylenediamine moiety as a MGO-specific sensing unit. DBTPP exhibits a series of distinct advantages, such as NIR emission, high selectivity and sensitivity, excellent acid-stability, and a huge off-on ratio. The probe could accurately monitor both exogenous and endogenous MGO variations in SH-SY5Y cells. Besides, it was able to image the endogenous MGO in a transgenic AD mouse model successfully, suggesting the great potential of MGO as a biomarker for early AD diagnosis.
| Original language | English |
|---|---|
| Pages (from-to) | 707-710 |
| Number of pages | 4 |
| Journal | Chemical Communications |
| Volume | 56 |
| Issue number | 5 |
| DOIs | |
| State | Published - 2020 |