TY - JOUR
T1 - An ab initio QM/MM study of the electrostatic contribution to catalysis in the active site of ketosteroid isomerase
AU - Wang, Xianwei
AU - He, Xiao
N1 - Publisher Copyright:
© © 2018 by the authors.
PY - 2018/9/20
Y1 - 2018/9/20
N2 - The electric field in the hydrogen-bond network of the active site of ketosteroid isomerase (KSI) has been experimentally measured using vibrational Stark effect (VSE) spectroscopy, and utilized to study the electrostatic contribution to catalysis. A large gap was found in the electric field between the computational simulation based on the Amber force field and the experimental measurement. In this work, quantum mechanical (QM) calculations of the electric field were performed using an ab initio QM/MM molecular dynamics (MD) simulation and electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method. Our results demonstrate that the QM-derived electric field based on the snapshots from QM/MM MD simulation could give quantitative agreement with the experiment. The accurate calculation of the electric field inside the protein requires both the rigorous sampling of configurations, and a QM description of the electrostatic field. Based on the direct QM calculation of the electric field, we theoretically confirmed that there is a linear correlation relationship between the activation free energy and the electric field in the active site of wild-type KSI and its mutants (namely, D103N, Y16S, and D103L). Our study presents a computational protocol for the accurate simulation of the electric field in the active site of the protein, and provides a theoretical foundation that supports the link between electric fields and enzyme catalysis.
AB - The electric field in the hydrogen-bond network of the active site of ketosteroid isomerase (KSI) has been experimentally measured using vibrational Stark effect (VSE) spectroscopy, and utilized to study the electrostatic contribution to catalysis. A large gap was found in the electric field between the computational simulation based on the Amber force field and the experimental measurement. In this work, quantum mechanical (QM) calculations of the electric field were performed using an ab initio QM/MM molecular dynamics (MD) simulation and electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method. Our results demonstrate that the QM-derived electric field based on the snapshots from QM/MM MD simulation could give quantitative agreement with the experiment. The accurate calculation of the electric field inside the protein requires both the rigorous sampling of configurations, and a QM description of the electrostatic field. Based on the direct QM calculation of the electric field, we theoretically confirmed that there is a linear correlation relationship between the activation free energy and the electric field in the active site of wild-type KSI and its mutants (namely, D103N, Y16S, and D103L). Our study presents a computational protocol for the accurate simulation of the electric field in the active site of the protein, and provides a theoretical foundation that supports the link between electric fields and enzyme catalysis.
KW - Electric field
KW - Enzyme catalysis
KW - Hydrogen-bond network
KW - Vibrational Stark effect
UR - https://www.scopus.com/pages/publications/85053789559
U2 - 10.3390/molecules23102410
DO - 10.3390/molecules23102410
M3 - 文章
C2 - 30241317
AN - SCOPUS:85053789559
SN - 1420-3049
VL - 23
JO - Molecules
JF - Molecules
IS - 10
M1 - 2410
ER -