TY - GEN
T1 - AIR QUALITY PREDICTION WITH PHYSICS-GUIDED DUAL NEURAL ODES IN OPEN SYSTEMS
AU - Tian, Jindong
AU - Liang, Yuxuan
AU - Xu, Ronghui
AU - Chen, Peng
AU - Guo, Chenjuan
AU - Zhou, Aoying
AU - Pan, Lujia
AU - Rao, Zhongwen
AU - Yang, Bin
N1 - Publisher Copyright:
© 2025 13th International Conference on Learning Representations, ICLR 2025. All rights reserved.
PY - 2025
Y1 - 2025
N2 - Air pollution significantly threatens human health and ecosystems, necessitating effective air quality prediction to inform public policy. Traditional approaches are generally categorized into physics-based and data-driven models. Physics-based models usually struggle with high computational demands and closed-system assumptions, while data-driven models may overlook essential physical dynamics, confusing the capturing of spatiotemporal correlations. Although some physics-guided approaches combine the strengths of both models, they often face a mismatch between explicit physical equations and implicit learned representations. To address these challenges, we propose Air-DualODE, a novel physics-guided approach that integrates dual branches of Neural ODEs for air quality prediction. The first branch applies open-system physical equations to capture spatiotemporal dependencies for learning physics dynamics, while the second branch identifies the dependencies not addressed by the first in a fully data-driven way. These dual representations are temporally aligned and fused to enhance prediction accuracy. Our experimental results demonstrate that Air-DualODE achieves state-of-the-art performance in predicting pollutant concentrations across various spatial scales, thereby offering a promising solution for real-world air quality challenges. The code is available at: https://github.com/decisionintelligence/Air-DualODE.
AB - Air pollution significantly threatens human health and ecosystems, necessitating effective air quality prediction to inform public policy. Traditional approaches are generally categorized into physics-based and data-driven models. Physics-based models usually struggle with high computational demands and closed-system assumptions, while data-driven models may overlook essential physical dynamics, confusing the capturing of spatiotemporal correlations. Although some physics-guided approaches combine the strengths of both models, they often face a mismatch between explicit physical equations and implicit learned representations. To address these challenges, we propose Air-DualODE, a novel physics-guided approach that integrates dual branches of Neural ODEs for air quality prediction. The first branch applies open-system physical equations to capture spatiotemporal dependencies for learning physics dynamics, while the second branch identifies the dependencies not addressed by the first in a fully data-driven way. These dual representations are temporally aligned and fused to enhance prediction accuracy. Our experimental results demonstrate that Air-DualODE achieves state-of-the-art performance in predicting pollutant concentrations across various spatial scales, thereby offering a promising solution for real-world air quality challenges. The code is available at: https://github.com/decisionintelligence/Air-DualODE.
UR - https://www.scopus.com/pages/publications/105010240060
M3 - 会议稿件
AN - SCOPUS:105010240060
T3 - 13th International Conference on Learning Representations, ICLR 2025
SP - 52136
EP - 52158
BT - 13th International Conference on Learning Representations, ICLR 2025
PB - International Conference on Learning Representations, ICLR
T2 - 13th International Conference on Learning Representations, ICLR 2025
Y2 - 24 April 2025 through 28 April 2025
ER -