AIR QUALITY PREDICTION WITH PHYSICS-GUIDED DUAL NEURAL ODES IN OPEN SYSTEMS

Jindong Tian, Yuxuan Liang, Ronghui Xu, Peng Chen, Chenjuan Guo, Aoying Zhou, Lujia Pan, Zhongwen Rao, Bin Yang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Scopus citations

Abstract

Air pollution significantly threatens human health and ecosystems, necessitating effective air quality prediction to inform public policy. Traditional approaches are generally categorized into physics-based and data-driven models. Physics-based models usually struggle with high computational demands and closed-system assumptions, while data-driven models may overlook essential physical dynamics, confusing the capturing of spatiotemporal correlations. Although some physics-guided approaches combine the strengths of both models, they often face a mismatch between explicit physical equations and implicit learned representations. To address these challenges, we propose Air-DualODE, a novel physics-guided approach that integrates dual branches of Neural ODEs for air quality prediction. The first branch applies open-system physical equations to capture spatiotemporal dependencies for learning physics dynamics, while the second branch identifies the dependencies not addressed by the first in a fully data-driven way. These dual representations are temporally aligned and fused to enhance prediction accuracy. Our experimental results demonstrate that Air-DualODE achieves state-of-the-art performance in predicting pollutant concentrations across various spatial scales, thereby offering a promising solution for real-world air quality challenges. The code is available at: https://github.com/decisionintelligence/Air-DualODE.

Original languageEnglish
Title of host publication13th International Conference on Learning Representations, ICLR 2025
PublisherInternational Conference on Learning Representations, ICLR
Pages52136-52158
Number of pages23
ISBN (Electronic)9798331320850
StatePublished - 2025
Event13th International Conference on Learning Representations, ICLR 2025 - Singapore, Singapore
Duration: 24 Apr 202528 Apr 2025

Publication series

Name13th International Conference on Learning Representations, ICLR 2025

Conference

Conference13th International Conference on Learning Representations, ICLR 2025
Country/TerritorySingapore
CitySingapore
Period24/04/2528/04/25

Fingerprint

Dive into the research topics of 'AIR QUALITY PREDICTION WITH PHYSICS-GUIDED DUAL NEURAL ODES IN OPEN SYSTEMS'. Together they form a unique fingerprint.

Cite this