TY - JOUR
T1 - Against Mobile Collusive Eavesdroppers
T2 - Cooperative Secure Transmission and Computation in UAV-Assisted MEC Networks
AU - Zhao, Mingxiong
AU - Wang, Zirui
AU - Guo, Kun
AU - Zhang, Rongqian
AU - Quek, Tony Q.S.
N1 - Publisher Copyright:
© 2002-2012 IEEE.
PY - 2025
Y1 - 2025
N2 - In Uncrewed Aerial Vehicle (UAV)-assisted Mobile Edge Computing (MEC) networks, the security of transmission faces significant challenges due to the vulnerabilities of line-of-sight links and potential eavesdropping on two-hop links. This paper addresses these challenges with an innovative Cooperative Secure Transmission and Computation strategy (CSTC), specifically engineered for time-slotted UAV-assisted MEC networks plagued by mobile collusive eavesdroppers. These eavesdroppers significantly bolster their interception capabilities through coordinated and optimized movements, escalating the security threats. To neutralize these risks, the proposed CSTC employs the UAV and remote devices as helper nodes to emit jamming signals, thereby thwarting eavesdropping activities, while simultaneously facilitating the efficient relay of users’ tasks to the base station for advanced processing. The CSTC aims to maximize the sum Secrecy Transmission Rate (STR) satisfying task latency constraints. It involves a joint optimization of UAV trajectory, jamming beamformers, transmit power, and data offloading strategy to expedite task transmission. Additionally, a real-time computation scheduling approach is developed based on a newly defined metric, the Urgency Degree of Users (UDoU), to enhance task processing efficiency. Our extensive simulations validate that the CSTC not only elevates the sum STR but also consistently meets latency constraints, demonstrating its robustness against advanced mobile eavesdropping techniques.
AB - In Uncrewed Aerial Vehicle (UAV)-assisted Mobile Edge Computing (MEC) networks, the security of transmission faces significant challenges due to the vulnerabilities of line-of-sight links and potential eavesdropping on two-hop links. This paper addresses these challenges with an innovative Cooperative Secure Transmission and Computation strategy (CSTC), specifically engineered for time-slotted UAV-assisted MEC networks plagued by mobile collusive eavesdroppers. These eavesdroppers significantly bolster their interception capabilities through coordinated and optimized movements, escalating the security threats. To neutralize these risks, the proposed CSTC employs the UAV and remote devices as helper nodes to emit jamming signals, thereby thwarting eavesdropping activities, while simultaneously facilitating the efficient relay of users’ tasks to the base station for advanced processing. The CSTC aims to maximize the sum Secrecy Transmission Rate (STR) satisfying task latency constraints. It involves a joint optimization of UAV trajectory, jamming beamformers, transmit power, and data offloading strategy to expedite task transmission. Additionally, a real-time computation scheduling approach is developed based on a newly defined metric, the Urgency Degree of Users (UDoU), to enhance task processing efficiency. Our extensive simulations validate that the CSTC not only elevates the sum STR but also consistently meets latency constraints, demonstrating its robustness against advanced mobile eavesdropping techniques.
KW - UAV-assisted MEC networks
KW - computation scheduling
KW - mobile collusive eavesdroppers
KW - secure transmission
UR - https://www.scopus.com/pages/publications/85215370707
U2 - 10.1109/TMC.2025.3529929
DO - 10.1109/TMC.2025.3529929
M3 - 文章
AN - SCOPUS:85215370707
SN - 1536-1233
VL - 24
SP - 5280
EP - 5297
JO - IEEE Transactions on Mobile Computing
JF - IEEE Transactions on Mobile Computing
IS - 6
ER -