TY - JOUR
T1 - Acute toxicity evaluation of nanoparticles mixtures using luminescent bacteria
AU - Zhang, Haijing
AU - Shi, Jianhong
AU - Su, Yinglong
AU - Li, Weiying
AU - Wilkinson, Kevin J.
AU - Xie, Bing
N1 - Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
PY - 2020/8/1
Y1 - 2020/8/1
N2 - As the application of nanoparticles (NPs) and their release to the environment has increased, it is important to verify their toxicity, with a special emphasis on particle solubilization and the interaction of NP mixtures. In the current study, a model luminescent bacteria, Vibrio fischeri, was employed to test the acute toxicity of individual NPs and their binary mixtures, including metal NPs (ZnNPs, CuNPs) and metal oxide NPs (ZnONPs, CuONPs). The independent action model was used to reflect the synergistic, additive, or antagonistic interactions of binary mixtures of these NPs. The results showed that the median effective concentration (EC50) inhibited the luminescence of V. fischeri were 20.5, 4.1, 11.6, and 118.7 mg L−1 for ZnNPs, CuNPs, ZnONPs, and CuONPs, respectively, suggesting that the toxicity of these NPs to V. fischeri were as the following order: CuNPs > ZnONPs > ZnNPs > CuONPs. The combined effect of NPs were found to be antagonistic for CuNPs-ZnONPs and CuNPs-CuONPs, synergistic for CuONPs-ZnNPs, CuNPs-ZnNPs, and ZnONPs-CuONPs, and additive for ZnNPs-ZnONPs, revealing a complex pattern of possible interactions. The differences of dissolved metal ions partly accounted for the different combined toxicity of binary mixtures of NPs. The findings have important implications for better understanding the true environmental risk of NP mixtures.
AB - As the application of nanoparticles (NPs) and their release to the environment has increased, it is important to verify their toxicity, with a special emphasis on particle solubilization and the interaction of NP mixtures. In the current study, a model luminescent bacteria, Vibrio fischeri, was employed to test the acute toxicity of individual NPs and their binary mixtures, including metal NPs (ZnNPs, CuNPs) and metal oxide NPs (ZnONPs, CuONPs). The independent action model was used to reflect the synergistic, additive, or antagonistic interactions of binary mixtures of these NPs. The results showed that the median effective concentration (EC50) inhibited the luminescence of V. fischeri were 20.5, 4.1, 11.6, and 118.7 mg L−1 for ZnNPs, CuNPs, ZnONPs, and CuONPs, respectively, suggesting that the toxicity of these NPs to V. fischeri were as the following order: CuNPs > ZnONPs > ZnNPs > CuONPs. The combined effect of NPs were found to be antagonistic for CuNPs-ZnONPs and CuNPs-CuONPs, synergistic for CuONPs-ZnNPs, CuNPs-ZnNPs, and ZnONPs-CuONPs, and additive for ZnNPs-ZnONPs, revealing a complex pattern of possible interactions. The differences of dissolved metal ions partly accounted for the different combined toxicity of binary mixtures of NPs. The findings have important implications for better understanding the true environmental risk of NP mixtures.
KW - Metal nanoparticles
KW - Metal oxide nanoparticles
KW - Mixture toxicity
KW - Vibrio fischeri
UR - https://www.scopus.com/pages/publications/85087339140
U2 - 10.1007/s10661-020-08444-6
DO - 10.1007/s10661-020-08444-6
M3 - 文章
C2 - 32617676
AN - SCOPUS:85087339140
SN - 0167-6369
VL - 192
JO - Environmental Monitoring and Assessment
JF - Environmental Monitoring and Assessment
IS - 8
M1 - 484
ER -