@inproceedings{2c1067e06bdd47e5892d50a430fc611a,
title = "Active resonance tuning of stretchable plasmonic structures",
abstract = "Active resonance tuning is highly desired for the applications of plasmonic structures, such as optical switches and surface enhanced Raman substrates. In this paper, we demonstrate the active tunable plasmonic structures, which composed of monolayer arrays of metallic semishells with dielectric cores on stretchable elastic substrates. These composite structures support Bragg-type surface plasmon resonances whose frequencies are sensitive to the arrangement of the metallic semishells. Under uniaxial stretching, the lattice symmetry of these plasmonic structures can be reconfigured from hexagonal to monoclinic lattice, leading to not only large but also polarization-dependent shifts of the resonance frequency. The experimental results are supported by the numerical simulations. Our structures fabricated using simple and inexpensive self-assembly and lift-transfer techniques can open up applications of the stretch-tunable plasmonic structures in sensing, switching, and filtering.",
keywords = "Metal optics, Resonances tuning, Surface plasmons",
author = "Xiaolong Zhu and Sanshui Xiao and Mortensen, \{N. Asger\}",
year = "2012",
doi = "10.1117/12.929528",
language = "英语",
isbn = "9780819491749",
series = "Proceedings of SPIE - The International Society for Optical Engineering",
booktitle = "Plasmonics",
note = "Plasmonics: Metallic Nanostructures and Their Optical Properties X ; Conference date: 12-08-2012 Through 16-08-2012",
}