TY - JOUR
T1 - Achieving super-linear speedup across multi-FPGA for real-time DNN inference
AU - Jiang, Weiwen
AU - Sha, Edwin H.M.
AU - Zhang, Xinyi
AU - Yang, Lei
AU - Zhuge, Qingfeng
AU - Shi, Yiyu
AU - Hu, Jingtong
N1 - Publisher Copyright:
© 2019 Association for Computing Machinery.
PY - 2019/10
Y1 - 2019/10
N2 - Real-time Deep Neural Network (DNN) inference with low-latency requirement has become increasingly important for numerous applications in both cloud computing (e.g., Apple's Siri) and edge computing (e.g., Google/Waymo's driverless car). FPGA-based DNN accelerators have demonstrated both superior flexibility and performance; in addition, for real-time inference with low batch size, FPGA is expected to achieve further performance improvement. However, the performance gain from the single-FPGA design is obstructed by the limited on-chip resource. In this paper, we employ multiple FPGAs to cooperatively run DNNs with the objective of achieving super-linear speed-up against single-FPGA design. In implementing such systems, we found two barriers that hinder us from achieving the design goal: (1) the lack of a clear partition scheme for each DNN layer to fully exploit parallelism, and (2) the insufficient bandwidth between the off-chip memory and the accelerator due to the growing size of DNNs. To tackle these issues, we propose a general framework, “Super-LIP”, which can support different kinds of DNNs. In this paper, we take Convolutional Neural Network (CNN) as a vehicle to illustrate Super-LIP. We first formulate an accurate system-level model to support the exploration of best partition schemes. Then, we develop a novel design methodology to effectively alleviate the heavy loads on memory bandwidth by moving traffic from memory bus to inter-FPGA links. We implement Super-LIP based on ZCU102 FPGA boards. Results demonstrate that Super-LIP with 2 FPGAs can achieve 3.48× speedup, compared to the state-of-the-art single-FPGA design. What is more, as the number of FPGAs scales up, the system latency can be further reduced while maintaining high energy efficiency.
AB - Real-time Deep Neural Network (DNN) inference with low-latency requirement has become increasingly important for numerous applications in both cloud computing (e.g., Apple's Siri) and edge computing (e.g., Google/Waymo's driverless car). FPGA-based DNN accelerators have demonstrated both superior flexibility and performance; in addition, for real-time inference with low batch size, FPGA is expected to achieve further performance improvement. However, the performance gain from the single-FPGA design is obstructed by the limited on-chip resource. In this paper, we employ multiple FPGAs to cooperatively run DNNs with the objective of achieving super-linear speed-up against single-FPGA design. In implementing such systems, we found two barriers that hinder us from achieving the design goal: (1) the lack of a clear partition scheme for each DNN layer to fully exploit parallelism, and (2) the insufficient bandwidth between the off-chip memory and the accelerator due to the growing size of DNNs. To tackle these issues, we propose a general framework, “Super-LIP”, which can support different kinds of DNNs. In this paper, we take Convolutional Neural Network (CNN) as a vehicle to illustrate Super-LIP. We first formulate an accurate system-level model to support the exploration of best partition schemes. Then, we develop a novel design methodology to effectively alleviate the heavy loads on memory bandwidth by moving traffic from memory bus to inter-FPGA links. We implement Super-LIP based on ZCU102 FPGA boards. Results demonstrate that Super-LIP with 2 FPGAs can achieve 3.48× speedup, compared to the state-of-the-art single-FPGA design. What is more, as the number of FPGAs scales up, the system latency can be further reduced while maintaining high energy efficiency.
KW - DNN inference
KW - FPGA
KW - Parallel computing
KW - Real-time
UR - https://www.scopus.com/pages/publications/85073156951
U2 - 10.1145/3358192
DO - 10.1145/3358192
M3 - 文章
AN - SCOPUS:85073156951
SN - 1539-9087
VL - 18
JO - ACM Transactions on Embedded Computing Systems
JF - ACM Transactions on Embedded Computing Systems
IS - 5s
M1 - a67
ER -