Abstract
A novel series of acenaphtho[1,2-b]pyrrole derivatives as potent and selective inhibitors of fibroblast growth factor receptor 1 (FGFR1) were designed and synthesized. In silico target prediction revealed that tyrosine kinases might be the potential targets of the representative compound 2, which was subsequently validated by enzyme-linked immunosorbent assay (ELISA) for its selective and active FGFR1 inhibition of various tyrosine kinases. The structure-activity relationship (SAR) analysis aided by molecular docking simulation in the ATP-binding site demonstrated that acenaphtho[1,2-b]pyrrole carboxylic acid esters (2-5) are potent inhibitors of FGFR1 with IC50 values ranging from 19 to 77 nM. Furthermore, these compounds exhibited favorable growth inhibition property against FGFR-expressing cancer cell lines with IC50 values ranging from micromolar to submicromolar. Western blotting analysis showed that compounds 2, 3, and 2b inhibited activation of FGFR1 and extracellular-signal regulated kinase 1/2 (Erk1/2).
| Original language | English |
|---|---|
| Pages (from-to) | 3732-3745 |
| Number of pages | 14 |
| Journal | Journal of Medicinal Chemistry |
| Volume | 54 |
| Issue number | 11 |
| DOIs | |
| State | Published - 9 Jun 2011 |
| Externally published | Yes |