TY - GEN
T1 - Access characteristic guided partition for read performance improvement on solid state drives
AU - Lv, Yina
AU - Shi, Liang
AU - Li, Qiao
AU - Xue, Chun Jason
AU - Sha, Edwin H.M.
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/7
Y1 - 2020/7
N2 - Solid state drives (SSDs) are now widely deployed due to the development of high-density and low-cost NAND flash memories. Previous works have identified that the read performance of SSDs is degrading along with the development. One of the most critical reasons is the access interference between reads and writes, as the latest NAND flash memories have significant latency gap between reads and writes. This paper addresses this issue with the assistance of access characteristic guided SSD partitioning. First, several server workloads are studied and it is shown that reads and writes can be separated based on their access characteristics. Second, a set of techniques is proposed to place data judiciously for requests separation. Finally, a workload based SSD partitioning scheme is proposed to improve the read performance. The experimental results show that the proposed solution can improve read performance by 36% on average compared with the state-of-the-art solutions.
AB - Solid state drives (SSDs) are now widely deployed due to the development of high-density and low-cost NAND flash memories. Previous works have identified that the read performance of SSDs is degrading along with the development. One of the most critical reasons is the access interference between reads and writes, as the latest NAND flash memories have significant latency gap between reads and writes. This paper addresses this issue with the assistance of access characteristic guided SSD partitioning. First, several server workloads are studied and it is shown that reads and writes can be separated based on their access characteristics. Second, a set of techniques is proposed to place data judiciously for requests separation. Finally, a workload based SSD partitioning scheme is proposed to improve the read performance. The experimental results show that the proposed solution can improve read performance by 36% on average compared with the state-of-the-art solutions.
UR - https://www.scopus.com/pages/publications/85093938353
U2 - 10.1109/DAC18072.2020.9218540
DO - 10.1109/DAC18072.2020.9218540
M3 - 会议稿件
AN - SCOPUS:85093938353
T3 - Proceedings - Design Automation Conference
BT - 2020 57th ACM/IEEE Design Automation Conference, DAC 2020
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 57th ACM/IEEE Design Automation Conference, DAC 2020
Y2 - 20 July 2020 through 24 July 2020
ER -