A truncated generalized Huber prior for image smoothing

Fang Li, Tingting Li

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Image smoothing is a fundamental task in computer vision and graphics. This paper presents a new image smoothing method based on a truncated generalized Huber prior. The proposed model is neither convex nor concave and is hard to optimize. We first transform the prior into a concave one, then utilize the technique of half-quadratic minimization to get an equivalent convex surrogate function. Thus the numerical algorithm is obtained by solving a weighted least square problem and iteratively updating the weights. The convergence of the algorithm is theoretically guaranteed. The proposed method is flexible and powerful in preserving edge/structure and eliminating undesired information. The effectiveness of the proposed method is demonstrated by several applications, including scale space filtering, texture removal, and clip-art JPEG artifacts removal.

Original languageEnglish
Pages (from-to)332-347
Number of pages16
JournalApplied Mathematical Modelling
Volume123
DOIs
StatePublished - Nov 2023

Keywords

  • Half-quadratic minimization
  • Image filtering
  • Image smoothing
  • Truncated generalized Huber function

Fingerprint

Dive into the research topics of 'A truncated generalized Huber prior for image smoothing'. Together they form a unique fingerprint.

Cite this