A stable electron-deficient metal-organic framework for colorimetric and luminescence sensing of phenols and anilines

Teng Gong, Peng Li, Qi Sui, Jinquan Chen, Jianhua Xu, En Qing Gao

Research output: Contribution to journalArticlepeer-review

143 Scopus citations

Abstract

A 3D metal-organic framework (LVMOF-1) with unique electron-deficient channels was synthesized and its sensing properties for electron-rich benzene derivatives were demonstrated. The MOF is built of robust [Eu(OH)(COO)2]n columns and tetratopic viologen-based crosslinkers and shows excellent chemical stability. The structure integrates Eu(iii) centers to luminesce and viologen moieties to accept electrons, and most notably, the electron-deficient viologen moieties, like those in box-like diviologen cyclophanes, are ideally spaced for sandwiching electron-rich aromatic rings. The MOF shows a bimodal response (color and luminescence) to phenols, anilines, benzenediols and aminophenols, with excellent selectivity against a wide range of other organic molecules. The chromogenic phenomena allow facile, quick and naked-eye test-paper detection of these priority contaminants in water, while the luminescence response affords very fast and sensitive quantitative detection. In particular, the detection limits for anilines and benzenediols are as low as 1-9 ppb. The charge transfer and energy transfer mechanisms for the sensing properties were elucidated on the basis of X-ray crystallography after single-crystal-to-single-crystal adsorption and orbital energy analyses according to electrochemical and spectroscopic data and also DFT calculations. The MOF bridges the gap between discrete cyclophanes functioning in solution and extended porous lattices in the solid state and can provide a blueprint for further development of sensory MOFs.

Original languageEnglish
Pages (from-to)9236-9244
Number of pages9
JournalJournal of Materials Chemistry A
Volume6
Issue number19
DOIs
StatePublished - 2018

Fingerprint

Dive into the research topics of 'A stable electron-deficient metal-organic framework for colorimetric and luminescence sensing of phenols and anilines'. Together they form a unique fingerprint.

Cite this