A stable and biocompatible shortwave infrared nanoribbon for dual-channel in vivo imaging

Cheng Yao, Ruwei Wei, Xiao Luo, Jie Zhou, Xiaodong Zhang, Xicun Lu, Yan Dong, Ruofan Chu, Yuxin Sun, Yu Wang, Wencheng Xia, Dahui Qu, Cong Liu, Jun Ren, Guangbo Ge, Jinquan Chen, Xuhong Qian, Youjun Yang

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

The shortwave infrared (SWIR) region is an ideal spectral window for next-generation bioimaging to harness improved penetration and reduced phototoxicity. SWIR spectral activity may also be accessed via supramolecular dye aggregation. Unfortunately, development of dye aggregation remains challenging. We propose a crystal-aided aggregate synthesis (CAASH) approach to introduce a layer of rationality for the development of J-aggregate and the successful development of a water-soluble SWIR JV-aggregate with a bisbenzannulated silicon rhodamine scaffold (ESi5). The resulting SWIR-aggregates exhibit excellent stabilities toward organic solvents, pH, sonication, photobleaching, thiols, and endogenous oxidative species. Notably, the aggregates have a high structure-dependent melting temperature of ca. 330-335 K. In fact, the heating/annealing process can be exploited to reduce aggregation disorder. The aggregates are biocompatible and have broad potential in in vivo fluorescence and photoacoustic imaging and more.

Original languageEnglish
Article number4
JournalNature Communications
Volume16
Issue number1
DOIs
StatePublished - Dec 2025

Fingerprint

Dive into the research topics of 'A stable and biocompatible shortwave infrared nanoribbon for dual-channel in vivo imaging'. Together they form a unique fingerprint.

Cite this