A Spectral Clustering-Based Multi-Source Mating Selection Strategy in Evolutionary Multi-Objective Optimization

Shuai Wang, Hu Zhang, Yi Zhang, Aimin Zhou, Peng Wu

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

In evolutionary multi-objective optimization, it has been illuminated that guide search with neighboring solutions improve the quality of new trial solutions and accelerate algorithms convergence by the regularity property of the continuous multi-objective optimization problems (MOPs). Very recently, clustering learning-based mating strategies have been popular for establishing reproduction operators with neighboring solutions. However, the existing mating strategies may be more reasonable with the full consideration and utilization of the regularity property. The current mating restrictions excessively emphasize algorithm convergence and ignore population diversity. In addition, the selected clustering algorithms in mating restrictions are not conducive for solving MOPs, which have complex Pareto sets (PSs) and\or Pareto fronts (PFs). To solve above problems and address both the algorithm convergence and the population diversity of multi-objective evolutionary algorithms (MOEAs), the spectral clustering based multi-source mating selection strategy (SMMS) is designed to detect regularity properties and balance population diversity while accelerating algorithm convergence. Consequently, a spectral clustering based multi-source mating selection multi-objective evolutionary algorithms is proposed, teamed SMMEA. SMMEA is applied to a number of test suites with a complex PS or PF, and compared with six state-of-the-art MOEAs. The results demonstrate that the proposed algorithm outperforms over the other approaches.

Original languageEnglish
Article number8835112
Pages (from-to)131851-131864
Number of pages14
JournalIEEE Access
Volume7
DOIs
StatePublished - 2019

Keywords

  • Algorithm convergence
  • clustering algorithm
  • evolutionary algorithm
  • mating restriction strategy
  • multi-objective optimization
  • population diversity

Fingerprint

Dive into the research topics of 'A Spectral Clustering-Based Multi-Source Mating Selection Strategy in Evolutionary Multi-Objective Optimization'. Together they form a unique fingerprint.

Cite this