A new opportunity for the emerging tellurium semiconductor: making resistive switching devices

Yifei Yang, Mingkun Xu, Shujing Jia, Bolun Wang, Lujie Xu, Xinxin Wang, Huan Liu, Yuanshuang Liu, Yuzheng Guo, Lidan Wang, Shukai Duan, Kai Liu, Min Zhu, Jing Pei, Wenrui Duan, Dameng Liu, Huanglong Li

Research output: Contribution to journalArticlepeer-review

54 Scopus citations

Abstract

The development of the resistive switching cross-point array as the next-generation platform for high-density storage, in-memory computing and neuromorphic computing heavily relies on the improvement of the two component devices, volatile selector and nonvolatile memory, which have distinct operating current requirements. The perennial current-volatility dilemma that has been widely faced in various device implementations remains a major bottleneck. Here, we show that the device based on electrochemically active, low-thermal conductivity and low-melting temperature semiconducting tellurium filament can solve this dilemma, being able to function as either selector or memory in respective desired current ranges. Furthermore, we demonstrate one-selector-one-resistor behavior in a tandem of two identical Te-based devices, indicating the potential of Te-based device as a universal array building block. These nonconventional phenomena can be understood from a combination of unique electrical-thermal properties in Te. Preliminary device optimization efforts also indicate large and unique design space for Te-based resistive switching devices.

Original languageEnglish
Article number6081
JournalNature Communications
Volume12
Issue number1
DOIs
StatePublished - 1 Dec 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'A new opportunity for the emerging tellurium semiconductor: making resistive switching devices'. Together they form a unique fingerprint.

Cite this