A LEARNING RESOURCE RECOMMENDATION ALGORITHM BASED ON ONLINE LEARNING BEHAVIOR

Haoxin Xu, Bihao Hu, Xiaoqing Gu, Longwei Zheng

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Faced with abundant online course resources, learners struggle to choose suitable materials. Learning resource recommendation algorithms can help address this. Rich online learning behavior data enables such recommendations. However, existing research only uses behavior events as learner features, ignoring event order i.e. Learning Behavior Patterns (LBPs). Also, only using click counts loses valuable information, hurting performance. We propose an algorithm leveraging online behavior sequences. First, extract sequences from logs and generate LBPs. Next, calculate Term Frequency Inverse Document Frequency (TF-IDF) values for each LBP as feature vectors. Cluster learners to improve efficiency. Finally, Calculate intra-cluster similarities for collaborative filtering recommendations. Experiments show over 30% precision, 9% recall, and 10% F1 improvements versus existing methods. Further ablation indicates learner clustering boosts time efficiency 3.75x without performance impact. Using TF-IDF values and tuning LBP length significantly improves performance. Overall, modeling orders via LBPs and better features like TF-IDF give major gains.

Original languageEnglish
Title of host publication2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5870-5874
Number of pages5
ISBN (Electronic)9798350344851
DOIs
StatePublished - 2024
Event2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 - Seoul, Korea, Republic of
Duration: 14 Apr 202419 Apr 2024

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Conference

Conference2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024
Country/TerritoryKorea, Republic of
CitySeoul
Period14/04/2419/04/24

Keywords

  • Collaborative Filtering
  • Learning Behavior Patterns
  • Learning resource recommendation
  • Online Learning Behavior
  • User Clustering

Fingerprint

Dive into the research topics of 'A LEARNING RESOURCE RECOMMENDATION ALGORITHM BASED ON ONLINE LEARNING BEHAVIOR'. Together they form a unique fingerprint.

Cite this