A general early-stopping module for crowdsourced ranking

Caihua Shan, Leong Hou U, Nikos Mamoulis, Reynold Cheng, Xiang Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Crowdsourcing can be used to determine a total order for an object set (e.g., the top-10 NBA players) based on crowd opinions. This ranking problem is often decomposed into a set of microtasks (e.g., pairwise comparisons). These microtasks are passed to a large number of workers and their answers are aggregated to infer the ranking. The number of microtasks depends on the budget allocated for the problem. Intuitively, the higher the number of microtask answers, the more accurate the ranking becomes. However, it is often hard to decide the budget required for an accurate ranking. We study how a ranking process can be terminated early, and yet achieve a high-quality ranking and great savings in the budget. We use statistical tools to estimate the quality of the ranking result at any stage of the crowdsourcing process, and terminate the process as soon as the desired quality is achieved. Our proposed early-stopping module can be seamlessly integrated with most existing inference algorithms and task assignment methods. We conduct extensive experiments and show that our early-stopping module is better than other existing general stopping criteria.

Original languageEnglish
Title of host publicationDatabase Systems for Advanced Applications - 25th International Conference, DASFAA 2020, Proceedings
EditorsYunmook Nah, Bin Cui, Sang-Won Lee, Jeffrey Xu Yu, Yang-Sae Moon, Steven Euijong Whang
PublisherSpringer Science and Business Media Deutschland GmbH
Pages314-330
Number of pages17
ISBN (Print)9783030594152
DOIs
StatePublished - 2020
Externally publishedYes
Event25th International Conference on Database Systems for Advanced Applications, DASFAA 2020 - Jeju, Korea, Republic of
Duration: 24 Sep 202027 Sep 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12113 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference25th International Conference on Database Systems for Advanced Applications, DASFAA 2020
Country/TerritoryKorea, Republic of
CityJeju
Period24/09/2027/09/20

Fingerprint

Dive into the research topics of 'A general early-stopping module for crowdsourced ranking'. Together they form a unique fingerprint.

Cite this