TY - JOUR
T1 - A flexible framework for built-up height mapping using ICESat-2 photons and multisource satellite observations
AU - Tang, Xiayu
AU - Yu, Guojiang
AU - Li, Xuecao
AU - Taubenböck, Hannes
AU - Hu, Guohua
AU - Zhou, Yuyu
AU - Peng, Cong
AU - Liu, Donglie
AU - Huang, Jianxi
AU - Liu, Xiaoping
AU - Gong, Peng
N1 - Publisher Copyright:
© 2024 Elsevier Inc.
PY - 2025/3/1
Y1 - 2025/3/1
N2 - Built-up heights serve as a nexus in understanding the complex relationship between urban forms and socioeconomic activities. With the advent of remote sensing technology, built-up height mapping from satellite observations has become available over the past years. However, the absence of high-precision sample data poses a significant limitation to built-up height mapping at large (regional or global) scales, particularly in developing regions. To address this issue, we proposed a flexible mapping framework to derive precise building height samples using the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) data for built-up height estimation. First, we calculated building heights from ICESat-2 photons using advanced algorithms such as Random Sample Consensus (RANSAC) linear fitting and cloth simulation filtering. Then, we constructed large-scale built-up height samples by aggregating the height information into grid cells with optimal size. Finally, aided by these grids with height information from ICEsat-2 and other satellite observations from Sentinel data as well as the digital surface model (DSM), we mapped built-up heights in two mega-cities (i.e., New York and Shenzhen) using the random forest regression model. Our results demonstrate building height estimation using ICESat-2 data generally exhibits in relation to other studies high accuracy, showing great potential to support large-scale built-up height mapping using satellite observations. We found the optimal grid size for built-up height mapping is around 300 m, after a comprehensive sensitivity analysis regarding the building fraction within the grid and its size. Overall, the mapped built-up heights are reliable, with relatively low mean absolute errors (MAE) of 2.69 m in New York and 3.87 m in Shenzhen, similar to or better than previous studies. By leveraging high-precision elevation data provided by the ICESat-2 data, our proposed approach can effectively collect samples in regions with limited information on building heights, showing great potential for large-scale built-up height monitoring and supporting future urban studies.
AB - Built-up heights serve as a nexus in understanding the complex relationship between urban forms and socioeconomic activities. With the advent of remote sensing technology, built-up height mapping from satellite observations has become available over the past years. However, the absence of high-precision sample data poses a significant limitation to built-up height mapping at large (regional or global) scales, particularly in developing regions. To address this issue, we proposed a flexible mapping framework to derive precise building height samples using the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) data for built-up height estimation. First, we calculated building heights from ICESat-2 photons using advanced algorithms such as Random Sample Consensus (RANSAC) linear fitting and cloth simulation filtering. Then, we constructed large-scale built-up height samples by aggregating the height information into grid cells with optimal size. Finally, aided by these grids with height information from ICEsat-2 and other satellite observations from Sentinel data as well as the digital surface model (DSM), we mapped built-up heights in two mega-cities (i.e., New York and Shenzhen) using the random forest regression model. Our results demonstrate building height estimation using ICESat-2 data generally exhibits in relation to other studies high accuracy, showing great potential to support large-scale built-up height mapping using satellite observations. We found the optimal grid size for built-up height mapping is around 300 m, after a comprehensive sensitivity analysis regarding the building fraction within the grid and its size. Overall, the mapped built-up heights are reliable, with relatively low mean absolute errors (MAE) of 2.69 m in New York and 3.87 m in Shenzhen, similar to or better than previous studies. By leveraging high-precision elevation data provided by the ICESat-2 data, our proposed approach can effectively collect samples in regions with limited information on building heights, showing great potential for large-scale built-up height monitoring and supporting future urban studies.
KW - Gridded-scale
KW - LiDAR
KW - New York
KW - Random forest
KW - Shenzhen
KW - Urban form
UR - https://www.scopus.com/pages/publications/85212580435
U2 - 10.1016/j.rse.2024.114572
DO - 10.1016/j.rse.2024.114572
M3 - 文章
AN - SCOPUS:85212580435
SN - 0034-4257
VL - 318
JO - Remote Sensing of Environment
JF - Remote Sensing of Environment
M1 - 114572
ER -