A deep neural network combined with molecular fingerprints (DNN-MF) to develop predictive models for hydroxyl radical rate constants of water contaminants

Shifa Zhong, Jiajie Hu, Xudong Fan, Xiong Yu, Huichun Zhang

Research output: Contribution to journalArticlepeer-review

94 Scopus citations

Abstract

This work combined a Deep Neural Network (DNN) with molecular fingerprints (MF) to develop models to predict the OH[rad] radical rate constants of 593 organic contaminants. Molecular descriptors, most often used in establishing quantitative structural-activity relationships (QSARs), were not used here because of their complicated generation processes that rely on advanced physicochemical and computational knowledge. Instead, we only fed the most basic information of the contaminant structures, i.e., MF encoding the types of atoms and how they are connected, to DNN and DNN then developed predictive models automatically. Here, a dataset containing 457 contaminants and their OH[rad] rate constants was first used to develop predictive models by DNN-MF. The hence developed models showed comparable accuracy to the traditional QSARs. The root mean square error (RMSE) values of the test sets were 0.358-0.384. The length of 2048 bits for the MF and 3 hidden layers (each with 1024 neurons) were found to be the optimal parameters for DNN. The model containing additional 89 micorpollutants in the training set was then successfully applied to predict the OH[rad] rate constants of 17 organophosphorus flame retardants and 29 additional micropollutants, with comparable accuracy to the reported molecular descriptors-based QSARs.

Original languageEnglish
Article number121141
JournalJournal of Hazardous Materials
Volume383
DOIs
StatePublished - 5 Feb 2020
Externally publishedYes

Keywords

  • Advanced oxidation processes
  • Deep neural network
  • Hydroxyl radical
  • Molecular fingerprints
  • QSAR
  • Water treatment

Fingerprint

Dive into the research topics of 'A deep neural network combined with molecular fingerprints (DNN-MF) to develop predictive models for hydroxyl radical rate constants of water contaminants'. Together they form a unique fingerprint.

Cite this