TY - JOUR
T1 - A comparative study of health risk of potentially toxic metals in urban and suburban road dust in the most populated city of China
AU - Shi, Guitao
AU - Chen, Zhenlou
AU - Bi, Chunjuan
AU - Wang, Li
AU - Teng, Jiyan
AU - Li, Yuansheng
AU - Xu, Shiyuan
PY - 2011/1
Y1 - 2011/1
N2 - Urban and suburban road dust samples were collected in the most populated city of China, Shanghai. Size fractions of dust particles were analyzed; metal levels of the dust were also measured. Human exposure to individual toxic metals through road dust was assessed for both children and adults. The results showed that dust particles from urban and suburban road were presented similar size distribution pattern, with most particles in the range of 100-400μm. Urban road dust consisted of higher proportions of inhalable, thoracic and respirable particles with increased risk of adverse effects to human. In general, mean grain sizes of urban road dust were smaller than suburban dust. Total organic carbon contents and levels of Pb, Cd, Cu, Zn, Ni, Cr in urban dust were higher than those of suburban dust. But the concentrations of As and Hg from suburban dust were higher, indicting a different main source. The exposure pathway which resulted in the highest level of risk for human exposed to road dust was ingestion of this material, which was followed by dermal contact. Except for some locations, risk values of both cancer and non-cancer obtained in this study were in the receivable range on the whole. Children had greater health risks than adults. The overall risks of non-cancer in urban area were higher than those in suburban area, but the values of cancer in the two areas were comparable. As for the aggregate noncarcinogenic risk, Pb was of most concern regarding the potential occurrence of health impacts. Of the three carcinogenic metals As, Cr and Cd, the only mean risk higher than 10-6 was Cr, accounting for a great percentage (95%) of the overall risk of cancer. Hence, potentially adverse health effects arising from Pb and Cr in road dust should arouse wide concern.
AB - Urban and suburban road dust samples were collected in the most populated city of China, Shanghai. Size fractions of dust particles were analyzed; metal levels of the dust were also measured. Human exposure to individual toxic metals through road dust was assessed for both children and adults. The results showed that dust particles from urban and suburban road were presented similar size distribution pattern, with most particles in the range of 100-400μm. Urban road dust consisted of higher proportions of inhalable, thoracic and respirable particles with increased risk of adverse effects to human. In general, mean grain sizes of urban road dust were smaller than suburban dust. Total organic carbon contents and levels of Pb, Cd, Cu, Zn, Ni, Cr in urban dust were higher than those of suburban dust. But the concentrations of As and Hg from suburban dust were higher, indicting a different main source. The exposure pathway which resulted in the highest level of risk for human exposed to road dust was ingestion of this material, which was followed by dermal contact. Except for some locations, risk values of both cancer and non-cancer obtained in this study were in the receivable range on the whole. Children had greater health risks than adults. The overall risks of non-cancer in urban area were higher than those in suburban area, but the values of cancer in the two areas were comparable. As for the aggregate noncarcinogenic risk, Pb was of most concern regarding the potential occurrence of health impacts. Of the three carcinogenic metals As, Cr and Cd, the only mean risk higher than 10-6 was Cr, accounting for a great percentage (95%) of the overall risk of cancer. Hence, potentially adverse health effects arising from Pb and Cr in road dust should arouse wide concern.
KW - Ingestion
KW - Particle grain size
KW - Potentially toxic metals
KW - Risk assessment
KW - Road dust
UR - https://www.scopus.com/pages/publications/78751575907
U2 - 10.1016/j.atmosenv.2010.08.039
DO - 10.1016/j.atmosenv.2010.08.039
M3 - 文章
AN - SCOPUS:78751575907
SN - 1352-2310
VL - 45
SP - 764
EP - 771
JO - Atmospheric Environment
JF - Atmospheric Environment
IS - 3
ER -