Abstract
Crossed molecular beam experiments and electronic structure calculations on the reaction of the meta-tolyl radical with vinylacetylene were conducted to probe the formation of methyl-substituted naphthalene isomers. We present the compelling evidence that under single collision conditions 1- and 2-methylnaphthalene can be formed without an entrance barrier via indirect scattering dynamics through a bimolecular collision of two non-PAH reactants: the meta-tolyl radical and vinylacetylene. The electronic structure calculations, conducted at the UCCSD(T)-F12b/cc-pVDZ//UM06-2x/cc-pVTZ + ZPE(UM06-2x/cc-pVTZ) level of theory, reveal that this reaction is initiated by the barrierless addition of the meta-tolyl radical to the terminal vinyl carbon (C1) of vinylacetylene, via a van-der-Waals complex implying that this mechanism can play a key role in forming methyl-substituted PAHs in low temperature extreme environments such as the low temperature interstellar medium and hydrocarbon-rich atmospheres of planets and their moons in the outer solar system. The reaction mechanism, proposed from the C11H11 potential energy surface, involves a sequence of isomerizations involving hydrogen transfer and ring closure, followed by hydrogen dissociation, which eventually leads to 1- and 2-methylnaphthalene in an overall exoergic process.
| Original language | English |
|---|---|
| Pages (from-to) | 21564-21575 |
| Number of pages | 12 |
| Journal | Physical Chemistry Chemical Physics |
| Volume | 17 |
| Issue number | 33 |
| DOIs | |
| State | Published - 14 Jul 2015 |
| Externally published | Yes |