应用极化水分子模型研究单分子层受限水的介电性质

Translated title of the contribution: Study of the Dielectric Property of Monolayer Confined Water Using A Polarizable Model

Qin Fan, Hongtao Liang, Xianqi Xu, Songtai Lv, Zun Liang, Yang Yang

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

The direct measurement of the dielectric properties of the confined water is exceedingly challenging, result in the lack of a quantitative understanding of its critical roles in electrochemistry, interfacial reactivity and transport thermodynamics. In this paper, we employ the equilibrium molecular dynamics simulation and the linear response theory-based analytical expressions for the local permittivity tensor, to calculate the static and dynamic dielectric response properties of the monolayer ice and water confined in the 0.65 nm size hydrophobic slab pore under 5×108 Pa lateral pressure and different temperatures. We carry out a detailed comparative study on the performance of predicting the confined structure and dielectric response properties between two well known water molecule models, i.e., constant dipole moment SPC/E model and polarizable SWM4-NDP water model. We have analyzed the probability distributions of the instantaneous SWM4-NDP water molecular dipole moments and calculated the static structure factor, radial dipole-dipole correlation function, static dielectric tensor, total dipole autocorrelation function and Debye relaxation time of each simulation system. For the first time, we found the novel variation of the water molecular polarities, in the monolayer confined liquid and solid phase of water, due to the extreme confinement condition. The performance in describing the structural properties are found comparable between the two water models, and the enhancement of the confinement weakens the advantage of the SWM4-NDP model in predicting the static dielectric property. However, in the prediction of the dynamic properties such as dielectric relaxation time, SWM4-NDP water model is superior to the SPC/E model. Therefore, we suggest that using SWM4-NDP model in the future investigation of the structural phase transition kinetics, ionic transportation and solvation kinetics would be the better choice. The current achievement of the fundamental insight and computational data could potentially facilitate the theoretical advancements in designing new devices of energy storage, sensor, and medicine delivery based on confined water systems.

Translated title of the contributionStudy of the Dielectric Property of Monolayer Confined Water Using A Polarizable Model
Original languageChinese (Traditional)
Pages (from-to)547-556
Number of pages10
JournalActa Chimica Sinica
Volume78
Issue number6
DOIs
StatePublished - 15 Jun 2020

Fingerprint

Dive into the research topics of 'Study of the Dielectric Property of Monolayer Confined Water Using A Polarizable Model'. Together they form a unique fingerprint.

Cite this